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Ph)/SiCS Motivation Argonne‘)
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Physics Goals of the EIC:
* Understand the nature of the gluon structure
* Measure nucleon and nuclear structure
* includes transverse and flavor structure

To Achieve the Physics Goals of the EIC:
* Measure the transverse momentum dependent parton distributions (TMDs)
* Measure the heavy flavor production in deep inelastic scattering and the related
charm and beauty parton distributions
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Tracking Requirements: Particles resultlrzg from the struck parton:

Secondary vertex reconstruction
* Impact Parameter Resolution, d,

* Small pixels for high position
resolution

 Low mass budget to avoid
secondary interactions
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Example Performance
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Example:

ATLAS ITK Upgrade with 50 um x 50 um pixels

* Includes high pileup -> not a factor at the EIC
e Expect further improvement
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* dy,<30pumfor |n| <3.5,< 50 um for |n| <4 for p;=10 GeV muons
* 2,<300 pm for |n| <3.5,< 450 um for |n| <4 for p; =10 GeV muons
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Particle ID Argonne‘)
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Time of Flight for Particle ID

Preliminary Results from Argonne EIC Simulation Group:

* Time information associated with each particle in the silicon tracker and EM
calorimeter using a single particle gun and an SiD detector

* Timing resolution of 10 ps allows for excellent kaon-pion separation
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Example EIC Detectors Argonne°
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A proposed JLab Detector for the EIC:

Flux-return
coils Flux retum yoke
Modular (muon chambers?)

aerogel
RICH solenoid coil (1.5-3 T)

/)

Si CMOS EM Calorimeter
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Propose to investigate monolithic CMOS technologies that can provide necessary position
resolution (Tracker) and particle ID (EM Calorimeter, Forward EM Calorimeter)
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Monolithic CMOS Argonne‘)
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Monolithic HYCMOS

Under consideration for the ATLAS Phase Il pixel detector upgrade
Less expensive by x2 than traditional silicon sensors
Integrated sensor + signal amplification
Use commercially available CMOS processing with a few modifications
* Deep n-well to isolate on-pixel electronics
* high resistivity substrates for high voltage without breakdown
Timing is currently ~1-100 ns
e collect by drift, not diffusion
pixel sizes down to at least 50 um x 50 um
fully monolithic reduces material
lower full depletion voltages

contact
contact
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deep n-well deep n-well
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! ! ! ! % ! ! !
p-substrate
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CMOS @ AMS foundry Argonne°
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ams 0.35 um/180 nm

Key features: Pixel | Pixel i+1
- Technology node 0.35 pum/180 nm  NMOS O
- Wells No possibility of isolating n-wells from : [ A :
the collecting deep n-well. No CMOS
electronics in the sensor area.
HY deep n-well
Can induce cross-talk.
- Metal layers 4/6 14 wm 10OV (1990 ©)
- HR 20 (standard value) — 1k OQ-cm (since 2015/6) Deplesed ]
- HV -150V<HV<OV °
- Depletion region 140 um thick Pestubat st Not deplctcd
- Backside biasing Not possible )
- Stitching : Not zgssible - Peric NIMA 650 pp. 158162 2011
Prototypes:

- ams 0.35 um = Initial R&D developments, H35CCPDv1-2, H35DEMO, HVStrip, CHESS1-2 (strips)

- ams 180 nm - CCPDv1-8, CLICpix=CCPDv3, C3PD, MuPix1-8 (Mu3e), MuPix8/ATLASPix w.
r—=a , = ===l |

Under investigation at Argonne
H35demo

CHESS2 MuPix8/ATLASPIX
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CMOS: H35demo Argonne°
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HVCMOS sensor

* Monolithic matrices

e Capacitively coupled to FEI4
(glued)

" TR T R TR T T T AT S —

Resistivities:
e 200

e 80Q

e 2000
1000 Q

Thickness:
* 300 um
* 100 pm

Bias Voltage

e Top side

* Back side (separate
process from AMS)

. 0
2 L_..__._.,___gulnnlnu :
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CMOS: H35demo
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Preliminary Results
* Non-optimized track matching

Tracking Efficiency
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CMOS Investigation for the EIC Argonne‘)
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Proposal:
e Characterization measurements of CMOS pixel structures relevant to the EIC
* Timing

* thinned sensors
* Back-side bias voltage
* Optimized designs (comparators, amplifiers, high gain, etc.)
* H35demo, H18 (MuPix8/ATLASPix)
* Include pixel geometries relevant to the EIC in the next design submissions
e Rely on input from Argonne EIC simulations group
* Leverage ongoing work in Argonne HEP in this area

Toward 10 ps Timing Resolution:
* Work with CMOS designer, Ivan Peric, to develop a design
 CMOS plus a gain layer similar to that in an LGAD silicon sensor
e Use TCAD simulation to demonstrate potential
* Determine how these technologies would benefit an EIC detector



Low Gain Amplifying Detectors (LGAD) Argonne°
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LGAD UFSD beam test: V Bias = 240V

» amplification region, ~5 um thick :2
e thin !a.yer of Boron .or Galll.um I ) y = 24.822x0471
* modifies the effective doping § 5 B
concentration profile -> electric field =2 R
. . . . [e) B UFSD - UFSD e l
profile to create high field gradient 0 15 | 0 urso-siem
* Radiation tolerance shown up to 104 2 10 | W 2ursD>-sim
neq/cm2 F e | :i UFSD - SiPM>
* not as tolerant as traditional silicon 0 . . ‘
: . 0 1 2 3
due to the high reactivity of the # UFSD
accelerant layer
N+ cathode

P-type layer:Different Boron do

P-type substrate: p = 5-15 kQ-cm

*
P+ anode
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Discussions with lvan Peric (AMS CMOS designer):

CMOS + Gain Layer

bias
contact

CSAin

1J' L J‘ﬁ 4 i « Possible foundries:
 AMS, Lfoundry

« = « * May be possible to include a
l deep n-well ] gain layer in the next AMS MPW
run
depleti
N I ’1 I =25 'cin <l /< * Need to add to the TCAD
simulations
e Understand constraints on
p-substrate pixel size
Gain layer
similar to LGAD
design
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Project Deliverables Argonne‘)
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1) The postdoc will carry out test bench measurements in the lab at Argonne as well as test
beam measurements at Fermilab and/or CERN. These include:
e Characterization of design options for an EIC
* Precision timing measurements of charge collection properties
* Test beam performance measurements with particle species and energies specific
to the EIC

2) The postdoc will also perform TCAD simulations using an existing license at Argonne.
* TCAD simulations of existing samples will be set up at Argonne
e TCAD simulation results will be compared to measurements
* An iterative process will aim at identifying the underlying cause of any
discrepancies and the simulation will be corrected

3) The postdoc will work with our collaborating design engineers to identify modifications
in simulation toward a design optimized for timing precision at the EIC.



Budget Argonne°
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Budget Postdoc Salary | Design Engineer Total Cost
Scenarlos (Sk) (Sk) Travel (Sk) (Sk)

S125 S$155
22 9w s
6o . 0

* The nominal budget will complete all three deliverables in the first year.

* The nominal budget minus 20% will complete deliverable items 1-2 since the

third item requires compensation for a design engineer and this funding would
be dropped first.

* The nominal budget minus 40% will complete only the first deliverable using
0.75 FTE of the postdoc the other 0.25 FTE would be funded for different work
under the EIC LDRD program.
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EIC Physics

Argonne°
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Measure x and Q2

* x: measure of the momentum fraction
of the struck quark in a proton

* Q2 measure of the resolution

* via energy and angle of scattered

electron and jet )
Possible to get

~100%
acceptance for

o . |the whole event
A \
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Rik Yoshida EIC Detector R&D meeting July 2016

> need excellent tracking, particle ID
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Timing Synchronization

Separate Argonne Effort on Detector-Wide Timing Synchronization:
Goal is to maintain the integrity of the clock between detectors
requires maintaining low phase noise/jitter from a single reference

signal

Strategy is to use an RF clock

July 13, 2016
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CMOS Concept for EIC Argonne‘)
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Luminosity
* upto 103
* expect <0.1 interactions per event
* Pileup should not be an issue, still need to identify primary vertex
* Bunch crossing ~10 ns
* Fast readout or time stamp to identify bunch crossing for an event

Vertexing
 Hadron beam spot f =5cm
* Low material budget

Particle identification
e time of flight
o dE/dx

Radiation damage
* <1x10'°1MeV n,/cm?
* Not an issue for most silicon technologies
Material Budget
* Keep as low as possible



Monolithic SiGe for EIC Argonne°
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ams 180 nm — MuPix8/ATLASPix and new design

MuPix8/ATLASPix: CCPD_1sGen it COPD_2ndGen | C3PD

- Submitted in January 2017 (eng. run)
- Itincludes:
- Matrices of pixels for ATLAS
- Pixel size: 25 pm x 25 pm, 25 pm x 50 pm, 33 pm x 125 pm, Rad-hard
S0 pm x 60 pm, 40 pm x 125 pm

N

- MuPix8
- Pixel size: 80 um x 81 um
- Matrix with 200 x 128 pixels
- Pixels with CSA and output driver only
- Hitinfo: x-address, y-address, 10-bit TS, 6-bit amplitude
- Time resolution: 6.25 ns
- Nominal power consumption: 300 mW per matrix
- Hit driven, triggerless R/O (MuPix8, Simple ATLASPix)
- Triggered R/O (M ATLASPix) m
- Resistivity: 20 Q-cm, 50-100 Q-cm, 100-400 Q-cm, —— i Y —— —
600-1.1k Qcm 1. Peric, 12th Trento Workshop, 2017

New design:
- Studies considering the
integration of RD53-like

periphery logic
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SIGe Argonne‘)
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Advantages of SiGe Bipolar Over CMOS for Silicon Strip Detectors

* A key element in the design of low noise, fast shaping, charge amplifiers 1s high
transconductance in the first stage.

* With CMOS technologies, this requires relatively larger bias currents than with
bipolar technologies.

* The changes that make SiGe Bipolar technology operate at 100 GHz for the
wireless industry coincide with the features that enhance performance in high
energy particle physics applications.

» Small feature size increases radiation tolerance.

» Extremely small base resistance (of order 10-100 €2) affords low noise designs
at very low bias currents.

* These design features are important for applications with:
 Large capacitive loads (e.g. 5-15 pF silicon strip detectors)

 Fast shaping times (e.g. accelerator experiments with beam crossing times of
tens of nanoseconds in order to identify individual beam crossing events)



Monolithic SiIGe for EIC Argonnea
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Second Option:
* Monolithic (CMOS-like) design based in SiGe HBT technology
* Faster than CMOS due to band-gap engineering

Emitter
Base 2 Collector

2 . ] TT PET results presented at TIPP 2017:

7 A, AP, //4 A,
p+ Chem Y Time Difference Detector 1 - 2, MIP, bias 2.3V/um
DI 7 7 -
/ Shallow Trench % p-SiGe—T jg/,éé Oxide é/ n+ g;//é 8 1400— Entries 26293
G 0 G 7 B — 100pm thick sensors 2
= — %2/ ndt 110/ 68
| g W - 1mm? readout pad Constant 1374 2 10.8
g n+ — (= 1 pF capacitance) Mean  0.0007669 = 0.0009265
D - .
I a p 1000|— Sigma 0.1495 = 0.0007
ATg Ge VA" V) :
lr r SE gy (X = W) 8001 —
600[—
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